Multi-modal Variational Encoder-Decoders

نویسندگان

  • Iulian Serban
  • Alexander Ororbia
  • Joelle Pineau
  • Aaron C. Courville
چکیده

Recent advances in neural variational inference have facilitated efficient training of powerful directed graphical models with continuous latent variables, such as variational autoencoders. However, these models usually assume simple, unimodal priors — such as the multivariate Gaussian distribution — yet many realworld data distributions are highly complex and multi-modal. Examples of complex and multi-modal distributions range from topics in newswire text to conversational dialogue responses. When such latent variable models are applied to these domains, the restriction of the simple, uni-modal prior hinders the overall expressivity of the learned model as it cannot possibly capture more complex aspects of the data distribution. To overcome this critical restriction, we propose a flexible, simple prior distribution which can be learned efficiently and potentially capture an exponential number of modes of a target distribution. We develop the multi-modal variational encoder-decoder framework and investigate the effectiveness of the proposed prior in several natural language processing modeling tasks, including document modeling and dialogue modeling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological Inflection Generation with Multi-space Variational Encoder-Decoders

This paper describes the CMU submission to shared task 1 of SIGMORPHON 2017. The system is based on the multi-space variational encoder-decoder (MSVED) method of Zhou and Neubig (2017), which employs both continuous and discrete latent variables for the variational encoder-decoder and is trained in a semi-supervised fashion. We discuss some language-specific errors and present result analysis.

متن کامل

Multi-space Variational Encoder-Decoders for Semi-supervised Labeled Sequence Transduction

Labeled sequence transduction is a task of transforming one sequence into another sequence that satisfies desiderata specified by a set of labels. In this paper we propose multi-space variational encoderdecoders, a new model for labeled sequence transduction with semi-supervised learning. The generative model can use neural networks to handle both discrete and continuous latent variables to exp...

متن کامل

Improving Variational Encoder-Decoders in Dialogue Generation

Variational encoder-decoders (VEDs) have shown promising results in dialogue generation. However, the latent variable distributions are usually approximated by a much simpler model than the powerful RNN structure used for encoding and decoding, yielding the KL-vanishing problem and inconsistent training objective. In this paper, we separate the training step into two phases: The first phase lea...

متن کامل

From Deterministic to Generative: Multi-Modal Stochastic RNNs for Video Captioning

Video captioning in essential is a complex natural process, which is affected by various uncertainties stemming from video content, subjective judgment, etc. In this paper we build on the recent progress in using encoder-decoder framework for video captioning and address what we find to be a critical deficiency of the existing methods, that most of the decoders propagate deterministic hidden st...

متن کامل

Variational Neural Machine Translation

Models of neural machine translation are often from a discriminative family of encoder-decoders that learn a conditional distribution of a target sentence given a source sentence. In this paper, we propose a variational model to learn this conditional distribution for neural machine translation: a variational encoder-decoder model that can be trained end-to-end. Different from the vanilla encod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1612.00377  شماره 

صفحات  -

تاریخ انتشار 2016